Big Ideas of Sets

Topic

Big Ideas

Examples

Sets & Sorting

 Attributes can be used to sort collections into sets.

•Color, size, shape, type of object, etc.

•The same collection can be sorted in different ways.

•Red bears vs. blue bears; big bears vs. little bears

 Sets can be compared and ordered.

•There are more red bears than blue bears. (compare); small bears, medium bears, large bears (order)

© Copyright Erikson Institute's Early Math Collaborative. Reprinted from Big Ideas of Early Mathematics (2014), Pearson Education

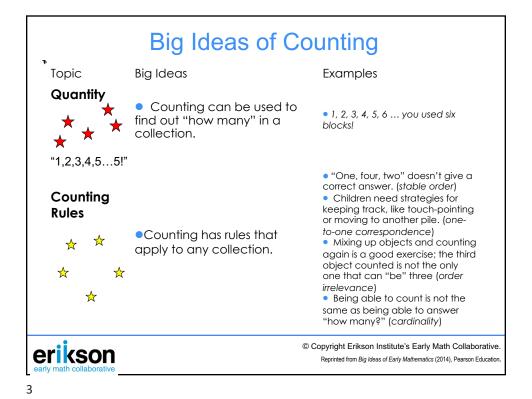
Big Ideas of Number Sense

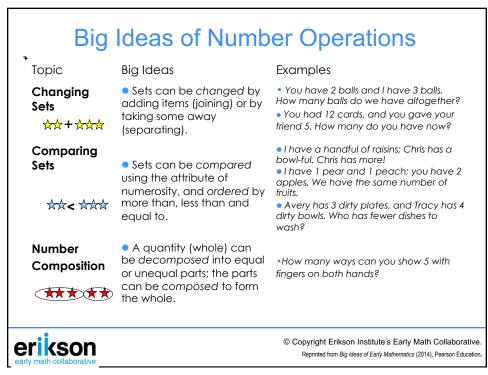
Topic

Big Ideas

Uses of Number

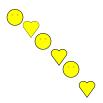
- Numbers are used many
- ways, some more mathematical than others.
- Tommy has 5 books. (cardinal)
- Ava is fifth in line today. (ordinal)
- Numbers on basketball jerseys, home addresses, telephone numbers (nominal)
- Let's meet at 5 pm on December 5. (referential)


Numerosity


- Quantity is an attribute of a set of objects and we use numbers to name specific quantities.
- 5 mice and 5 elephants are alike in quantity, though different in other ways.

- The quantity of a small collection can be intuitively perceived without counting.
- Children just "see" three objects and know it's 3.

© Copyright Erikson Institute's Early Math Collaborative Reprinted from Big Ideas of Early Mathematics (2014), Pearson Education


4

L.Ginet & J.Skourletos 2

Big Ideas of Pattern

Topic

Pattern & Regularity

Big Ideas

- Patterns are sequences (repeating or growing) governed by a rule; they exist both in the world and in mathematics.
- Identifying the rule of a pattern brings predictability and allows us to make generalizations.
- The same pattern can be found in many different forms.

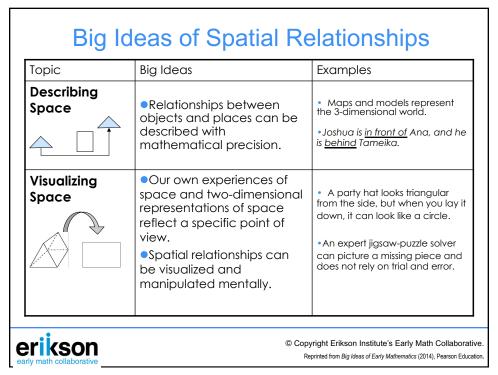
Examples

- Dots on a ladybug;
 posts of a fence; adding
 1 to any number gives
 you the next number
- After lunch comes recess; If we keep counting people's feet, it will always be 2 more.
- Big block, little block; big block, little block; big block, little block ... OR snap, clap; snap, clap; snap, clap...

© Copyright Erikson Institute's Early Math Collaborative.

Reprinted from Big Ideas of Early Mathematics (2014), Pearson Education.

5


Big Ideas of Measurement Topic Big Ideas Examples A bucket has many measurable **Attributes** Many different attributes can be measured, even attributes, including height, weight, capacity, or circumference: What kind of when measuring a single object. •Weighing rocks on a pan balance (direct Comparison comparison); using a length of string to All measurement involves measure a table in one room and chairs in a "fair" comparison. another (indirect comparison). •A "fair" comparison measures the same attribute. Units must be of equal size, with no gaps or overlaps. Nonstandard units (such as blocks) and **Precision** standard units (such as inches) allow for Quantifying a more precision than direct comparison. measurement helps us •There is always a more precise describe and compare measurement possible - we never get it more precisely. exactly "right," but it must be "good enough" for the task at hand. © Copyright Erikson Institute's Early Math Collaborative Reprinted from Big Ideas of Early Mathematics (2014), Pearson Education

6

L.Ginet & J.Skourletos 3

Topic	Big Ideas	Examples
Gathering Data What kind of pets does our class have?	The purpose of collecting data is to answer questions when the answers are not immediately obvious.	Children's own questions are most meaningful to them; often the need to gather data will come naturally in the course of discussion or from content areas such as science and social studies.
Organizing Data hamsters cats fish doos	Data must be represented in order to be interpreted, and how data are gathered and organized depends on the question.	 Age-appropriate data collection methods: sort real objects; organize pictures, counters, or name cards; make tallies; survey friends or family. A tally chart can help with seeing clusters in the data; a bar graph provides an easy way to compare quantities across categories.
Describing Data	olt is useful to compare parts of the data and to draw conclusions about the data as a whole.	There are more dogs than fish. But overall, hamsters are the most common pet.

7

8

Горіс	Big Ideas	Examples
Defining & Analyzing Shapes	Shapes can be defined and classified by their attributes. The flat faces of solid (three-dimensional) shapes are two-dimensional shapes. Shapes can be combined and separated (composed and decomposed) to make new shapes.	A rectangle must have two sets of parallel sides of equal length and four 90° angles; thus, a square is a special type of rectangle. A baseball is a sphere and can be represented in a drawing as a circle. Any rectangle can be divided into 2 triangles.

9

Number &	 What kind of thing are we counting? What is the unit? What is the set?
Operations	 Number is an attribute of a set.
	 Subitizing is seeing small sets.
Geometry	O What kind of shape is it?
	 We use shape as an attribute to sort.
	 We define shapes by their attributes.
Measurement	o What kind of big is it?
	 We use size as an attribute to sort.
	 Each type of measurement corresponds to a particular attribute.
Data Analysis	• What kind of question are we trying to answer?
	 We collect & analyze data by classifying, sorting & making sets.

10

L.Ginet & J.Skourletos 5